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Abstract

We consider the problem of a society whose members must choose from a finite set of
alternatives. After knowing the chosen alternative, members may reconsider their
membership. Thus, they must take into account, when voting, the effect of their votes not
only on the chosen alternative but also on the final composition of the society. We show that,
under plausible restrictions on preferences, equilibria of this two-stage game satisfy stability
and voter's sovereignty.
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1 Introduction

Most of voting theory studies the static problem of how societies select an alternative from

a given set of potential choices. However, the set of members belonging to a society often

evolve over time. Moreover, this evolution partly depends on the selected alternative. If

membership is voluntary, members might leave the society if the chosen alternative makes

it undesirable. This, in turn, might cause that other members (who also care about who

belongs to the society) might now �nd undesirable to belong to the society and leave as

well.1 We model this strategic problem as a two-stage game in which members �rst choose

(by a voting procedure) an alternative and then, after knowing the chosen alternative, they

decide whether to stay or to exit the society. We show that, under plausible restrictions

on preferences, the equilibria of this game satisfy two basic properties. We �rst show that,

whenever preference pro�les are monotonic, any equilibrium is stable in the sense that (after

knowing the chosen alternative and the �nal composition of the society) members who have

decided to remain in the society do not want to exit (internal stability) and members who

have decided to leave the society do not want rejoin it (external stability). Second, we show

that for the case of a society using voting by committees to select its new members (as

in Barberà, Sonnenschein, and Zhou, 1991), and provided that preference pro�les are also

candidate separable, any undominated equilibrium strategy satis�es voter�s sovereignty in

the sense that unanimously good candidates are elected and unanimously bad candidates

are not.

The paper is organized as follows. Section 2 contains the preliminaries and Section 3

presents the results.

2 Preliminaries

Let N = f1; :::; ng be the initial set of members of a society who must �rst choose an
alternative from a non-empty set X and then, knowing the chosen alternative x 2 X, decide
to stay or to leave the society. A �nal society [x; S] consists of the chosen alternative x 2 X
and the subset of members S 2 2N that have chosen to remain in the society. Members

have preferences over X � 2N , the set of all possible �nal societies. Each member i 2 N
has a preference relation Ri over X � 2N , where Ri is a complete, re�exive and transitive
binary relation (Pi and Ii are the strict and indi¤erence preference relations induced by Ri)

satisfying the following four conditions:

(C1) Strictness: For all x; y 2 X and S; T 2 2N such that i 2 S \ T and [S; x] 6= [T; y],

1See Barberà, Maschler, and Shalev (2001), Barberà and Perea (2002), Granot, Maschler, and Shalev
(2002), Berga, Bergantiños, Massó, and Neme (2004, 2006, and 2007), and Massó and Nicolò (2008) for
dynamic analisys of voting.
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either [x; S]Pi [y; T ] or [y; T ]Pi [x; S].

(C2) Indi¤erence: For all x 2 X and all S 2 2N , i =2 S if and only if [x; S] Ii [x; ;].
Moreover, for all x; y 2 X, [x; ;] Ii [y; ;].

(C3) Non-initial Exit: If ; 2 X, then [;; N ]Pi [;; Nn fig].

(C4) Monotonicity: For all x 2 X and all T ( T 0 � N such that i 2 T; [x; T 0]Pi [x; T ] :

Monotonicity means that members consider the exit of other members undesirable, in-

dependently of the chosen alternative. Notice that monotonicity does not impose any con-

dition when comparing two �nal societies with di¤erent chosen alternatives. In particular,

monotonicity admits the possibility that member i prefers to belong to a smaller society.

Let Ri be the set of all such preference relations for member i and let R = R1� :::�Rn.

We call Ri 2 Ri a monotonic preference relation and R = (R1; :::; Rn) 2 R a monotonic

preference pro�le.

First, to choose an alternative from the set X each member i has to select a particular

message (vote) mi from a given setMi. A voting procedure is a mapping v :M1� :::�Mn !
X. Observe that if Mi = Ri for all i 2 N , v is a social choice function.
Second, assume that x 2 X has already been chosen by a voting procedure v. To avoid

to go into the speci�c details of the exit decisions (the order in which members have to

make their exit decision, as well as their information about the other�s decisions) we de�ne

recursively the set of members leaving the society after x is chosen.

De�ne the setEA1 (x) = fi 2 N j [x;Nn fig]Pi [x;N ]g, or equivalently, fi 2 N j [x; ;]Pi [x;N ]g.
Namely, EA1(x) is the set of members who want to exit when x is chosen even when the

other members stay. Notice that by (C4), they want to exit independently of the exit deci-

sion of the other members. Let t � 1 and assume EAt0 (x) has been de�ned for all t0 such
that 1 � t0 � t. Then,

EAt+1 (x) =

�
i 2 Nn

�
tS

t0=1

EAt
0
(x)

�
j [x; ;]Pi

�
x;Nn

�
tS

t0=1

EAt
0
(x)

���
:

At each step, all members who would like to exit do so, given that x has been chosen,

and the current society is formed by all members who in all previous steps wanted to stay

(i.e., the most optimistic circumstance). Let tx be either equal to 1 if EA1 (x) = ; or else be
the smallest positive integer satisfying the property that EAtx (x) 6= ; but EAtx+1 (x) = ;:

Then, de�ne the exit set after x as EA (x) =
txS
t=1

EAt (x).

Observe that this set only depends on the preference pro�le R. Motivation and some of

its properties can be found in Berga, Bergantiños, Massó, and Neme (2006). In particular,

EA(x) is the set of members leaving the society if exit is sequential (and they play according

to the unique subgame perfect Nash equilibrium of the subgame starting at x) and it is

independent of the ordering in which members decide (sequentially) whether to stay or to
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exit. The set EA(x) also coincides with the set of members leaving the society if exit is

simultaneous and players eliminate iteratively dominated strategies.

Now, given any voting procedure v : M ! X, we model our voting problem with exit

as the normal form game �v = (N;M;R; ov) where ov is the outcome function such that

for each m 2 M , ov (m) = [v (m) ; NnEA (v (m))] is the �nal society. Observe that a Nash
Equilibrium (NE) m� of �v imposes to members, through (EA(x))x2X , a minimal rational

behavior in all subgames starting at any x (subgame perfection, for instance, if exit is

sequential).

Later on we will focus on a particular instance of our general problem by introducing the

possibility of exit in the framework studied by Barberà, Sonnenschein, and Zhou�s (1991),

which corresponds to consider X = 2K , where K is a �nite set of candidates to become new

members of the society, and to consider the normal form game �vc = (N;M;R; ovc), where

Mi = 2
K for all i 2 N (each member votes for a subset of candidates) and letting the voting

procedure vc : (2K)N ! 2K be voting by committees. Following Barberà, Sonnenschein,

and Zhou (1991) voting by committees are de�ned by a collection of families of winning

coalitions (committees), one for each candidate, W = (Wk)k2K . Members vote for a subset

of candidates. To be elected, a candidate must get the vote of all members of some coalition

among those that are winning for that candidate. Formally, a committee for k, denoted by

Wk, is a non-empty family of non-empty coalitions of N satisfying coalition monotonicity

(S 2 Wk and S � T imply T 2 Wk). Given a committee Wk its set of minimal winning

coalitions isWm
k � fS 2 Wk j T =2 Wk for all T ( Sg. A voting procedure vc :

�
2K
�N ! 2K

is voting by committees if there exists (Wk)k2K such that for all (S1; :::; Sn) 2
�
2K
�N
and all

k 2 K,
k 2 vc(S1; :::; Sn)() fi 2 N j k 2 Sig 2 Wk:

We say that vc has no dummies if the corresponding committee W has the property that

for all k 2 K and all i 2 N there exists S 2 Wm
k such that i 2 S.

Barberà, Sonnenschein, and Zhou (1991) show that for the problem of choosing new

members of the society (without exit), voting by committees is the class of strategy-proof

and onto social choice functions on the domain of separable preferences. We now translate to

our setting with exit the concept of separable preferences. Given Ri 2 Ri and y 2 K, we say
that candidate y is good for i according to Ri whenever [fyg ; N ]Pi [;; N ]; otherwise, we say
that candidate y is bad for i according to Ri. Denote by G (Ri) and B (Ri) the set of good

and bad candidates for i according to Ri, respectively. Given R 2 R, let G (R) =
T
i2N

G (Ri)

the set of unanimously good candidates and B (R) =
T
i2N

B (Ri) the set of unanimously bad

candidates.

Candidate Separability: A preference Ri is candidate separable if for all S � K and

y 2 KnS, and for all T � N such that i 2 T , [S [ fyg ; T ]Pi [S; T ] if and only if y 2 G (Ri).
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Let Si � Ri be the set of monotonic and candidate separable preference relations of i

and let S = S1 � :::� Sn.

3 Results

We �rst show that for any voting procedure v, all Nash equilibria (NE) of �v satisfy two

stability properties. The �rst one is internal stability which says that members who remain

in the society do not want to exit. The second one is external stability which says that

members who leave the society do not want to rejoin it (see Berga, Bergantiños, Massó, and

Neme (2004) for a motivation, de�nition and analysis of these properties in a more general

framework). Formally,

Internal Stability: A strategy pro�lem 2M satis�es internal stability if i 2 NnEA (v (m))
implies [v (m) ; NnEA (v (m))]Pi [v (m) ; ;].

External Stability: A strategy pro�lem 2M satis�es external stability if i =2 NnEA (v (m))
implies [v (m) ; ;]Pi [v (m) ; NnEA (v (m)) [ fig].

Proposition 1 states that, for any voting procedure v : M ! X, all NE of �v satisfy

internal and external stability.

Proposition 1 Let m 2 M be a NE of �v = (N;M;R; ov), where R 2 R. Then, m
satis�es internal and external stability.

Proof Let m be a NE of �v and assume �rst that i 2 NnEA (v (m)). Hence, i =2
EAtv(m)+1 (v (m)). By (C2), [v (m) ; NnEA (v (m))]Pi [v (m) ; ;]. Thus, m satis�es internal

stability.

Assume now that i =2 NnEA (v (m)). Therefore, there exists t such that i 2 EAt (v (m)) :

Hence, [v (m) ; ;]Pi
�
v (m) ; Nn

�
t�1S
t0=1

EAt
0
(v (m))

��
. SinceNnEA (v (m)) � Nn

�
t�1S
t0=1

EAt
0
(v (m))

�
and Ri is monotonic,�

v (m) ; Nn
�
t�1S
t0=1

EAt
0
(v (m))

��
Pi [v (m) ; (NnEA (v (m))) [ fig] :

By transitivity of Pi, [v (m) ; ;]Pi [v (m) ; (NnEA (v (m))) [ fig]. Thus, m satis�es external

stability. �

Internal stability follows immediately from the de�nition of EA(x), independently of the

monotonicity of the preference pro�le. However, the example below illustrates the fact that

if the preference pro�le is non-monotonic, a NE of �v may not satisfy external stability.

Example Let N = f1; 2; 3g be a society whose members have to decide whether or not
to admit candidate y as a new member of the society (i.e., X = f;; yg). Let the voting
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procedure vc1 be voting by quota 1; that is, y is chosen if and only if at least a member

votes for it. Consider �rst the non-monotonic preference pro�le R, additively representable

by the following table

u1 u2 u3

1 1 �8 1

2 2 5 �10
3 4 12 15

y 100 �7 �8

;

where the number in each cell represents the utility each member i 2 N assigns to members

in N , as well as to candidate y (we normalize by setting ui (;) = 0 for all i 2 N and by

saying that if i =2 T then, the utility of [x; T ] is 0). That is, for all i 2 N , all x; x0 2 f;; yg,
and all T; T 0 2 2N ; [x; T ]Pi [x0; T 0] if and only if8><>:

P
j2T
ui (j) + ui (x) >

P
j2T 0

ui (j) + ui (x
0) if i 2 T \ T 0P

j2T
ui (j) + ui (x) > 0 if i 2 T but i =2 T 0:

Notice that, by the indi¤erence condition (C2), if i =2 T and i =2 T 0 then, [x; T ] Ii [x0; T 0].
Notice thatR2 andR3 are not monotonic ([;; f2; 3g]P2 [;; N ] and [;; f1; 3g]P3 [;; N ]). Clearly
EA (;) = ;. Moreover, EA1 (y) = f3g, EA2 (y) = f2g, and EA3 (y) = ;. Hence, EA (y) =
f2; 3g. Let m be such that vc1 (m) = ;. Then, mi = ; for all i 2 N . If member 1 votes for
y instead of voting for ;, vc1 (y;m�1) = y and hence,�

vc1 (y;m�1) ; NnEA
�
vc1 (y;m�1)

��
= [y; f1g]P1 [;; N ] =

�
vc1 (m) ; NnEA

�
vc1 (m)

��
;

which means that m is not a NE of �vc
1
.

It is easy to see that [y; f1g] is the �nal society generated by the NE strategy m� =

(y; ;; ;). Moreover, it is the unique �nal society that can be generated by a NE of �vc1. But
m� does not satisfy external stability because [y; f1; 3g]P3 [y; ;]. �

We now ask whether in the context of selecting new members of the society, any NE of

the game �vc = (N;
�
2K
�N
; R; ovc) satis�es the property that unanimously good candidates

are chosen while unanimously bad ones are not. Formally,

Voter�s Sovereignty: A strategy pro�lem 2M of �vc = (N;
�
2K
�N
; R; ovc) satis�es voter�s

sovereignty if G (R) � vc (m) � KnB (R) :

Proposition 2 Let vc :
�
2K
�N ! 2K be a voting by committees without dummies and let

R 2 S. Then, the strategy mi of voting for a common bad (mi\B (R) 6= ;) and the strategy
~mi of not voting for a common good (G (R)\ (Kn ~mi) 6= ;) are dominated strategies in �vc.
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Proof We will only show that to vote for a common bad is a dominated strategy. The

proof that to not vote for a common good is also a dominated strategy is similar and left

to the reader. Let i 2 N and mi 2 2K be such that y 2 mi \ B (R). We will show that
the strategy m0

i = min fyg dominates mi. Fix m�i 2 M�i and consider the two subsets of

candidates vc (m) and vc (m) n fyg. We �rst prove the following claim:

Claim: EA (vc (m) n fyg) � EA (vc (m)).

Proof of the Claim: By de�nition, EA (vc (m) n fyg) =
T 0S
t=1

EAt (vc (m) n fyg) and

EA (vc (m)) =
TS
t=1

EAt (vc (m)) ; where T 0 = tvc(m)nfyg and T = tvc(m). We �rst establish

that EA1 (vc (m) n fyg) � EA (vc (m)). Assume j 2 EA1 (vc (m) n fyg). Then,

[vc (m) n fyg ; ;]Pj [vc (m) n fyg ; N ] : (1)

Since y 2 B (Rj) and Rj is candidate separable, [vc (m) n fyg ; N ]Pj [vc (m) ; N ]. Therefore,
by (C2), (1), and transitivity of Rj we conclude that

[vc (m) ; ;]Pj [vc (m) ; N ] :

Thus, j 2 EA1 (vc (m)) � EA (vc (m)). Assume now that EAt (vc (m) n fyg) � EA (vc (m))
for all t = 1; :::; t0 � 1; where 2 � t0 � T 0: We now prove that EAt0 (vc (m) n fyg) �
EA (vc (m)). Suppose not. Then, there exists j 2 EAt0 (vc (m) n fyg) such that j =2
EA (vc (m)). Since j 2 EAt0 (vc (m) n fyg) ;

[vc (m) n fyg ; ;]Pj
�
vc (m) n fyg ; Nn

�
t0�1S
t=1

EAt (vc (m) n fyg)
��
:

Then, �
vc (m) n fyg ; Nn

�
t0�1S
t=1

EAt (vc (m) n fyg)
��
Pj [vc (m) n fyg ; NnEA (vc (m))]

because preferences are monotonic and
t0�1S
t=1

EAt (vc (m) n fyg) � EA (vc (m)) by assumption.

Since y 2 B (Rj) and Rj is candidate separable,

[vc (m) n fyg ; NnEA (vc (m))]Pj [vc (m) ; NnEA (vc (m))] :

Moreover,

[vc (m) ; NnEA (vc (m))]Pj [vc (m) ; ;]

because j =2 EA (vc (m)) : Hence, by transitivity of Rj, [vc (m) n fyg ; ;]Pj [vc (m) ; ;], which
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contradicts (C2). Therefore, the Claim is proved.

We now compare the outcomes ovc (m0
i;m�i) and ovc (mi;m�i) in the three following

mutually exclusive cases:

Case 1: i 2 EA (vc (m) n fyg). By the above Claim, i 2 EA (vc (m)). Therefore, by (C2),
ovc (m0

i;m�i) Iio
vc (mi;m�i).

Case 2: i =2 EA (vc (m) n fyg) and i 2 EA (vc (m)). Hence,

[vc (m) n fyg ; NnEA (vc (m) n fyg)]Pi [vc (m) n fyg ; ;] Ii [vc (m) ; ;] :

Since vc (m0
i;m�i) is equal to either vc (m) or vc (m) n fyg,

ovc (m0
i;m�i) = [vc (m0

i;m�i) ; NnEA (vc (m0
i;m�i))]

Ri [vc (mi;m�i) ; NnEA (vc (mi;m�i))]

= ovc (mi;m�i) :

Case 3: i =2 EA (vc (m) n fyg) and i =2 EA (vc (m)). Hence,

[vc (m) n fyg ; NnEA (vc (m) n fyg)] Pi [vc (m) n fyg ; NnEA (vc (m))]
Pi [vc (m) ; NnEA (vc (m))] ;

where the two strict preferences follow from monotonicity (and the above Claim) and can-

didate separability of Ri, respectively.

Since vc is without dummies we can �nd I 2 Wm
y such that i 2 I: Take m�

j =

fyg for all j 2 I n fig ; m�
j = ; for all j 2 N n I; and m0

i = ;. Remember that

y 2 mi: Then, vc
�
mi;m

�
�i
�
= fyg and vc

�
m0
i;m

�
�i
�
= ;, and hence, by (C3), i =2

EA
�
vc
�
mi;m

�
�i
�
n fyg

�
=EA

�
vc
�
m0
i;m

�
�i
��
=EA (;) = ;: By (C2) and (C3), if i 2 EA (y)

then

ovc
�
m0
i;m

�
�i
�
= [N; ;]Pi [;; ;] Ii [fyg ; ;] Ii [fyg ; N n EA (y)] = ovc

�
mi;m

�
�i
�
:

Since y 2 BK (Ri) and Ri 2 Si, if i =2 EA (y) then

ovc
�
m0
i;m

�
�i
�
= [;; N ]Pi [fyg ; N n EA (y)] = ovc

�
mi;m

�
�i
�
:

In both cases, ovc
�
m0
i;m

�
�i
�
Pio

vc
�
mi;m

�
�i
�
: Therefore, ovc (m0

i;m�i)Rio
vc (mi;m�i) for all

m�i and there exists at least one m�
�i 2M�i for which ovc

�
m0
i;m

�
�i
�
Pio

vc
�
mi;m

�
�i
�
: Thus,

strategy mi is dominated by strategy m0
i. �

Remark In Proposition 2 we assumed that the voting by committees vc had no dummies.

Notice that if member i is a dummy for y, then to votemi and to votemin fyg are equivalent

7



strategies for member i because, independently of what the rest of members are voting, a

vote of mi or mi n fyg leads to the same �nal outcome.

The next corollary is an immediate consequence of Proposition 2.

Corollary Let m 2M be an undominated NE of �vc =
�
N;
�
2K
�N
; R; ovc

�
where R 2 S

and vc is voting by committees without dummies. Then, m satis�es voter�s sovereignty.
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